Model Prediksi Penjadwalan Produksi Energi Terbarukan dengan Algoritma XGBoost dan Analisis Interpretatif Menggunakan SHAP

Authors

  • M. Safii STIKOM Tunas Bangsa
  • Husain Universitas Bumigora
  • Ika Okta Kirana STIKOM Tunas Bangsa
  • Sasha Aiko Leana STIKOM Tunas Bangsa
  • Yuli Indahwati Gultom STIKOM Tunas Bangsa

DOI:

https://doi.org/10.53513/jursi.v4i4.11443

Keywords:

Energi terbarukan, Extreme Gradient Boosting, Penjadwalan, Prediksi, SHapley Additive exPlanations

Abstract

Penjadwalan produksi energi terbarukan adalah kegiatan untuk menyeimbangkan antara pasokan dan permintaan energi dalam siklus sistem energi berkelanjutan. Berbagai jenis energi terbarukan seperti hidro, angin, matahari, dan lainnya akan melalui pemodelan prediktif dari jadwal produksi menggunakan algoritma Extreme Gradient Boosting (XGBoost) yang dikombinasikan dengan pendekatan interpretabilitas model menggunakan SHapley Additive exPlanations (SHAP). Penelitian ini menggunakan data sekunder dengan parameter Tahun, Negara, Energi Surya, Energi Angin, Energi Hidro, Energi Terbarukan Lainnya, dan Total Energi Terbarukan. Pemodelan menunjukkan bahwa energi angin dan energi matahari memiliki prediksi produksi yang meningkat ketika nilai fitur tinggi dan energi angin memiliki efek negatif ketika nilai fitur rendah. Penelitian ini memiliki kontribusi yang signifikan terhadap faktor yang mempengaruhi penjadwalan dan juga berpeluang untuk penerapan sistem cerdas dalam pengambilan keputusan sektor energi. Hasil penelitian ini dapat menjadi dasar untuk merumuskan strategi manajemen energi berkelanjutan yang memiliki potensi untuk mengintegrasikan kecerdasan buatan dan transparansi model dalam kebijakan energi terbarukan.

Author Biographies

M. Safii, STIKOM Tunas Bangsa

Informatika

Husain, Universitas Bumigora

Sistem Informasi

Ika Okta Kirana, STIKOM Tunas Bangsa

Sistem Informasi

Sasha Aiko Leana, STIKOM Tunas Bangsa

Teknik Informatika

Yuli Indahwati Gultom, STIKOM Tunas Bangsa

Sistem Informasi

References

P. A. Østergaard, N. Duic, Y. Noorollahi, and S. Kalogirou, “Renewable energy for sustainable development,” Renew. Energy, vol. 199, pp. 1145–1152, 2022, doi: https://doi.org/10.1016/j.renene.2022.09.065.

V. Agbakwuru, P. Obidi, O. Salihu, and C. Ogwu, “The role of renewable energy in achieving sustainable development goals,” Int. J. Eng. Res. Updat., vol. 7, pp. 13–27, Nov. 2024, doi: 10.53430/ijeru.2024.7.2.0046.

T. Güney, “Renewable Energy Consumption and Sustainable Development: A Panel Cointegration Approach,” J. Knowl. Econ., vol. 15, no. 1, pp. 1286–1301, 2024, doi: 10.1007/s13132-023-01107-0.

H. Prasodjo, “Green diplomacy as an effort by the Indonesian government in Realizing Net Zero Emission (NZE) in the year 2060,” 2023, pp. 184–190. doi: 10.1201/9781003360483-21.

S. Hakkal and A. A. Lahcen, “XGBoost To Enhance Learner Performance Prediction,” Comput. Educ. Artif. Intell., vol. 7, p. 100254, 2024, doi: https://doi.org/10.1016/j.caeai.2024.100254.

Q. Wu et al., “Application of shale TOC prediction model using the XGBoost machine learning algorithm: a case study of the Qiongzhusi Formation in central Sichuan Basin,” Carbonates and Evaporites, vol. 40, no. 1, p. 8, 2024, doi: 10.1007/s13146-024-01042-4.

Z. Ali, Z. Abduljabbar, H. Tahir, A. Sallow, and S. Almufti, “Exploring the Power of eXtreme Gradient Boosting Algorithm in Machine Learning: a Review,” Acad. J. Nawroz Univ., vol. 12, pp. 320–334, May 2023, doi: 10.25007/ajnu.v12n2a1612.

X. Y. Liew, N. Hameed, and J. Clos, “An investigation of XGBoost-based algorithm for breast cancer classification,” Mach. Learn. with Appl., vol. 6, p. 100154, 2021, doi: https://doi.org/10.1016/j.mlwa.2021.100154.

N. B. Shaik, K. Jongkittinarukorn, and K. Bingi, “XGBoost based enhanced predictive model for handling missing input parameters: A case study on gas turbine,” Case Stud. Chem. Environ. Eng., vol. 10, p. 100775, 2024, doi: https://doi.org/10.1016/j.cscee.2024.100775.

C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artif. Intell. Rev., vol. 54, no. 3, pp. 1937–1967, 2021, doi: 10.1007/s10462-020-09896-5.

S. Fatima, A. Hussain, S. Amir, S. H. Ahmed, and S. Aslam, “XGBoost and Random Forest Algorithms: An in Depth Analysis,” Pakistan J. Sci. Res., vol. 3, pp. 26–31, Oct. 2023, doi: 10.57041/pjosr.v3i1.946.

D. Mane, “Unlocking Machine Learning Model Decisions: A Comparative Analysis of LIME and SHAP for Enhanced Interpretability,” J. Electr. Syst., vol. 20, pp. 598–613, Apr. 2024, doi: 10.52783/jes.1480.

Y. Nohara, K. Matsumoto, H. Soejima, and N. Nakashima, “Explanation of machine learning models using shapley additive explanation and application for real data in hospital,” Comput. Methods Programs Biomed., vol. 214, p. 106584, 2022, doi: https://doi.org/10.1016/j.cmpb.2021.106584.

S. Manoharan, “A Study On Evaluating The Impact Of Hybrid Work Model On Employee Performance: Adaptability, Sustainability And Organizational Success In The It Sector In Bangalore.” 2024.

C. Zhang, X. Zou, and C. Lin, “Fusing XGBoost and SHAP Models for Maritime Accident Prediction and Causality Interpretability Analysis,” Journal of Marine Science and Engineering, vol. 10, no. 8. 2022. doi: 10.3390/jmse10081154.

D. Ying, P. Hua, and M. Hao, “Research and Application of SMOTE-Based Method with XGBoost Regression Prediction,” in 2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA), 2023, pp. 1737–1740. doi: 10.1109/ICIPCA59209.2023.10257809.

N. E. Benti, M. D. Chaka, and A. G. Semie, “Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects,” Sustainability, vol. 15, no. 9. 2023. doi: 10.3390/su15097087.

D. Kumar, S. K. Sood, and K. S. Rawat, “Early health prediction framework using XGBoost ensemble algorithm in intelligent environment,” Artif. Intell. Rev., vol. 56, no. 1, pp. 1591–1615, 2023, doi: 10.1007/s10462-023-10565-6.

M. Alizamir et al., “An interpretable XGBoost-SHAP machine learning model for reliable prediction of mechanical properties in waste foundry sand-based eco-friendly concrete,” Results Eng., vol. 25, p. 104307, 2025, doi: https://doi.org/10.1016/j.rineng.2025.104307.

K. K. P. M. Kannangara, W. Zhou, Z. Ding, and Z. Hong, “Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method,” J. Rock Mech. Geotech. Eng., vol. 14, no. 4, pp. 1052–1063, 2022, doi: https://doi.org/10.1016/j.jrmge.2022.01.002.

M. Li, H. Sun, Y. Huang, and H. Chen, “Shapley value: from cooperative game to explainable artificial intelligence,” Auton. Intell. Syst., vol. 4, no. 1, p. 2, 2024, doi: 10.1007/s43684-023-00060-8.

Downloads

Published

2025-07-16