Diagnosa Penyakit Mata Berdasarkan Citra Ocular Disease Intelligent Recognition (ODIR) Dengan Gabor Filter Klasifikasi Levenberg-Marquardt

Authors

DOI:

https://doi.org/10.53513/jis.v22i2.8787

Keywords:

Classification, Gabor Filter, Levenberg-Marquardt, ODIR Image, Segmentation

Abstract

Light captured by both eyeballs is passed on to the pupil, focused through the sensitive part of the eyeball. The retinal organ of the eye converts the light capture into nerve impulses, and delivers them to the brain through the nerve fibers contained in the impulses. There are several complications of disease in the sense of sight that can be diagnosed from the arrangement of the retina of the eye. Image segmentation stages are needed so that the fiber contained in the retinal optics can be changed. The initial stage is with the initialization of the arrangement for the contour movement stages. Using the Levenberg-Marquardt algorithm is able to improve the following results obtained as a basis for previously collected data. In this study eye disease only diagnosed eye disease in complaints of the retina of the eye. The purpose of this research is to diagnose early sight diseases that appear based on the symptoms shown by the composition of the retinal parts of the human eyeball and classify the level of danger of the results of eye disease diagnoses.

Author Biographies

Anita Sindar Sinaga, STMIK Pelita Nusantara

Computer Science Lecturer

Feby Ginting, STMIK Pelita Nusantara

Mahasiswa STMIK Pelita Nusantara

Sethu - Ramen, STMIK Pelita Nusantara

Mahasiswa STMIK Pelita Nusantara

References

Lussiana ETP, S. Widodo, and D. A. Pambayun, “Penerapan Filter Gabor untuk Analisis Tekstur Citra Mammogram,†Semin. Nas. Apl. Teknol. Inf., vol. 2011, no. Snati, pp. 17–18, 2011.

R. Indraswari, W. Herulambang, and R. Rokhana, “Deteksi Penyakit Mata Pada Citra Fundus Menggunakan Convolutional Neural Network (CNN) Ocular Disease Detection on Fundus Images Using Convolutional Neural Network (CNN),†Techno. Com, vol. 21, no. 2, pp. 378–389, 2022, [Online]. Available: https://www.kaggle.com/datasets/jr2ngb/cataractdataset.

F. F. Maulana and N. Rochmawati, “Klasifikasi Citra Buah Menggunakan Convolutional Neural Network,†J. Informatics Comput. Sci., vol. 1, no. 02, pp. 104–108, 2020, doi: 10.26740/jinacs.v1n02.p104-108.

H. Muhammad Sipan, “MENGENALI JENIS AYAM KAMPUNG MENGGUNAKAN FILTER GABOR Abstraks,†vol. 14, no. 1, pp. 6–13, 2023.

S. Swasono, A. Damayanti, and A. B. Pratiwi, “Retinal Diseases Classification Using Levenberg-Marquath (LM) Learning Algorithm for Pi Sigma Network (PSN) and Principal Component Analysis (PCA) Methods,†J. Phys. Conf. Ser., vol. 1306, no. 1, 2019, doi: 10.1088/1742-6596/1306/1/012048.

G. A. Wiguna, “Sistem Deteksi Katarak Menggunakan Metode Ekstraksi Indeks Warna Dengan Klasifikasi Jarak Euklidean,†J. Pendidik. Teknol. Inf., vol. 1, no. 2, pp. 40–46, 2018, doi: 10.37792/jukanti.v1i2.10.

A. S. R. Sinaga and E. Marpaung, “Segmentasi Warna HSV Telapak Tangan Untuk Deteksi Bakteri Pada Pendemi Covid 19,†Fountain Informatics J., vol. 5, no. 3, p. 1, 2020, doi: 10.21111/fij.v5i3.4925.

A. S. R. Sinaga, “Real Time Database Seleksi Wajah Digital Menggunakan Algoritma CAMshift,†Fountain Informatics J., vol. 5, no. 1, p. 9, 2020, doi: 10.21111/fij.v5i1.3642.

M. S. Khan et al., “Deep Learning for Ocular Disease Recognition: An Inner-Class Balance,†Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/5007111.

A. Habsari, T. Harsono, H. Yuniarti, and R. Tjandra, “Deteksi Microaneurysm Pada Mata Sebagai Langkah Awal Untuk Penentuan Diabetic Retinophaty Menggunakan Pengolahan Citra Digital,†J. Appl. Informatics Comput., vol. 5, no. 2, pp. 139–145, 2021, doi: 10.30871/jaic.v5i2.3302.

J. Adler and T. B. Pratama, “Identifikasi Pola Warna Citra Google Maps Menggunakan Jaringan Syaraf Tiruan Metode Levenberg –Marquardt dengan MatLab Versi 7.8,†Komputika J. Sist. Komput., vol. 7, no. 2, pp. 95–101, 2018, doi: 10.34010/komputika.v7i2.1396.

S. I. Syafi’i, R. T. Wahyuningrum, and A. Muntasa, “Segmentasi Obyek Pada Citra Digital Menggunakan Metode Otsu Thresholding,†J. Inform., vol. 13, no. 1, pp. 1–8, 2016, doi: 10.9744/informatika.13.1.1-8.

G. R. Dantes et al., “Segmentasi mata katarak pada citra medis menggunakan metode operasi morfologi 1),†no. 1, 2018.

A. Fadlil, W. S. Aji, and A. S. Nugroho, “Sistem Monitoring Kolesterol Melalui Iris Mata dengan Metode Pengolahan Citra,†J. Rekayasa Elektr., vol. 16, no. 1, pp. 36–43, 2020, doi: 10.17529/jre.v16i1.15657.

D. Juniati and A. E. Suwanda, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Retina Menggunakan Dimensi Fraktal Box Counting Dan Fuzzy K-Means,†Prox. J. Penelit. Mat. dan Pendidik. Mat., vol. 5, no. 1, pp. 10–18, 2022, doi: 10.30605/proximal.v5i1.1623.

A. N. Rohman and D. P. Pamungkas, “Identifikasi Kelainan Mata Katarak Pada Citra Digital Menggunakan Metode Deep Learning,†Seminar Nasional Inovasi Teknologi. 2020.

V. Vincentia, N. Nurhasanah, and I. Sanubary, “Deteksi Awal Retinopati Hipertensi Menggunakan Jaringan Syaraf Tiruan pada Citra Fundus Mata,†J. Fis., vol. 9, no. 1, pp. 9–20, 2019, doi: 10.15294/jf.v9i1.18508.

Downloads

Published

2023-08-13