Pengelompokan Data Pertumbuhan dan Kontribusi Ekonomi Indonesia Menurut Provinsi Menggunakan Metode K-Means Clustering

Authors

  • Rizka Maulidiah Universitas Sembilanbelas November Kolaka
  • Mutmainnah Muchtar Universitas Sembilanbelas November Kolaka http://orcid.org/0000-0002-1423-5375
  • Nurul Aisyah Fitri Universitas Sembilanbelas November Kolaka
  • Ika Asriani Universitas Sembilanbelas November Kolaka
  • Mutiara Putri Yasmine Universitas Sembilanbelas November Kolaka

DOI:

https://doi.org/10.53513/jsk.v6i2.7769

Keywords:

Economic Growth, Economic Contribution, Data Mining, K-Means Clustering.

Abstract

Since the Covid-19 pandemic in recent years, several countries have been preoccupied with how to break the chain of the spread of the virus, including Indonesia, whose government policies are considered contradictory in efforts to improve the economy in Indonesia so that the economy has decreased in many regions in Indonesia. The importance of restoring the regional economy in order to improve people's welfare requires the government to be able to pay more attention to the region. to group the economic growth and economic contribution of Indonesian cities using data mining techniques with the K-Means Clustering algorithm using rapid miner tools. This research will classify into 3 clusters, high, medium, and low clusters. The results obtained for Indonesia's economic growth resulted in 2 provinces for high clusters, 1 low cluster, and 31 provinces for medium clusters. For the economic contribution of high clusters are 3 provinces, low clusters are 24 provinces, and medium clusters are 7 provinces. This method is considered to work well on the object of this research data.

References

Badan Pusat Statistik, “Laporan Perekonomian Indonesiaâ€,2022.

Y. Prayoga, H. S. Tambunan, dan I. Parlina, “Penerapan Clustering Pada Laju Inflasi Kota di Indonesia Dengan Algoritma K-Meansâ€, BRAHMANA: Jurnal Kecerdasan Buatan, vol. 1, no. 1, pp. 24-30, Desember 2019.

F. A. Tanjung, A. P. Windarto, dan M. Fauzan, “Penerapan Metode K-Means Pada Pengelompokkan Pengangguran di Indonesiaâ€, Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 6, no. 1, pp 61-74, Februari.

W. Katrina, E. Irawan, Saifullah, dan A. P. Windarto, “Implementasi Metode K-Means Cluster Dengan Rapid Minner Dalam Mengelompokkan Wanita Berstatus Kawin Pegguna KB Menurut Provinsiâ€, Regional Development Industry & Health Science, Technology and Art of Life.

Rinaldi Syahputra, “Analisis Faktor-Faktor yang Mempengaruhi Pertumbuhan Ekonomi Di Indonesiaâ€, Jurnal Samudra Ekonomika, vol.1, no.2, Oktober 2017.

C. N. Prabiantissa, dan G.E. Yuliastuti, “Prediksi Pergerakan Ikan Di Pesisir Madura Meggunakan Metode Gaussian Mixure Model dan K-Means Clusteringâ€, Jurnal Teknologi Informasi dan Terapan (J-TIT), vol. 8, no.2, Desember 2021.

B. S. Praja, P. D. Kusuma, C. Setianingsih,â€Penerapan Metode k-Means Clustering Dalam Pengelompokkan Data Penumpang dan Kapal Angkutan Laut di Indonesiaâ€, e-Proceeding of Engineering, vol.6, no.1, pp.1442-1449, April 2019.

D. Astuti, A. R. Iskandar, dan A. Febrianti, “Penetuan Strategi Promosi Usaha Mikro Kecil Dan Menengah (UMKM) Menggunakan Metode CRIPS-DM dengan Algoritma K-Means Clusteringâ€, Journal of Informatics, Information System, Software Engineering and Application, vol. 1, no. 2, May 2019.

Downloads

Published

2023-07-07