Vol.1. No.2, Mei 2018, pp. 377~387

P-ISSN: 9800-3456 E-ISSN: 2675-9802

Penerapan Data Mining Untuk Pengelompokkan Data Kebutuhan Beras Karyawan Dengan Menggunakan Metode K-Medoids

Agri Sastika*, Yohanni Syahra**, Azanuddin**

- * Program Studi Sistem Informasi, STMIK Triguna Dharma
- ** Program Studi Sistem Informasi, STMIK Triguna Dharma

Article Info

Article history:

Received Mei 12th, 2018 Revised Mei 20th, 2018 Accepted Mei 26th, 2018

Keyword:

Data Mining, *K-medoids* Pengelompokkan data kebutuhan beras karyawan.

ABSTRACT

Koperasi karyawan adalah sebuah koperasi yang berada di sebuah perusahaan tertentu. Anggota koperasi ini adalah para karyawan dari perusahaan tersebut. Tidak seperti koperasi sekolah, koperasi karyawan haruslah memiliki badan hukum dan terdaftar karena para anggota dan penggurusnya sudah dewasa dan paham mengenai hukum. Salah satunya koperasi karyawan nusa tiga yang merupakan bagian dari perusahaan perkebunan nusantara III yang kegiatannya untuk penyaluran beras karyawan. Namun pihak dari koperasi nusa tiga mengalami permasalahan dalam melakukan pengelompokkan kebutuhan beras diantaranya tidak adanya kejelasan antara karayawan yang termasuk kategori kelompok dengan jumlah kebuthan beras tinggi dan rendah. Melihat permasalahan tersebut maka diperlukan pengelompokkan data kebutuhan beras karyawan, dengan sebuah aplikasi data mining menggunakan metode k-medoids. Maka dari itu dirancanglah sebuah sistem aplikasi berbasis dekstop dengan menerapkan metode k-medoids untuk mengelompokkan data kebutuhan beras karyawan menjadi dua cluster. Adapun hasil dari penelitian ini adalah sebuah aplikasi yang dapat melakukan pengelompokkan data kebutuhan beras karywan pada kopkar nusa tiga secara sistematis, sehingga dapat dilakukan penyesuain kebutuhan beras setiap karyawan dengan tepat sesaui dengan hasil dari clusternya.

> Copyright © 2018 STMIK Triguna Dharma. All rights reserved.

377

Corresponding Author:

Nama : Agry Sastika

Kampus : STMIK Triguna Dharma Program Studi : Sistem Informasi E-Mail : agrisastika@gmail.com

1. PENDAHULUAN

Koperasi merupakan gerakan ekonomi rakyat yang bertujuan untuk meningkatkan kesejahteraan masyarakat dengan melandaskan kegiataannya pada prinsip-prinsip Koperasi [1].

Koperasi karyawan adalah sebuah koperasi yang berada di sebuah perusahaan tertentu. Anggota koperasi ini adalah para karyawan dari perusahaan tersebut. Tidak seperti koperasi sekolah, koperasi karyawan haruslah memiliki badan hukum dan terdaftar karena para anggota dan penggurusnya sudah dewasa dan paham mengenai hukum. Salah satunya koperasi karyawan nusa tiga yang merupakan bagian dari perusahaan perkebunan nusantara III yang salah satu kegiatannya yaitu penyaluran beras karyawan.

Adanya perbedaan data dalam pengadaan kebutuhan beras karyawan yang berjumlah besar dan kecil.. diperlukan pengelompokkan agar dapat diketahui karyawan mana yang mendapatkan jumlah kebutuhan beras yang tinggi dan rendah. Namun pihak dari koperasi nusa tiga mengalami permasalahan dalam melakukan pengelompokkan kebutuhan beras diantaranya tidak adanya kejelasan antara karayawan yang termasuk kategori kelompok dengan jumlah kebuthan beras tinggi dan rendah. Untuk mengatasi permasalahan tersebut, maka dapat diselesaikan dengan menggunakan data mining

Data Mining adalah suatu proses menemukan hubungan yang berarti, pola, dan kecenderungan dengan memeriksa dalam sekumpulan besar data yang tersimpan dengan menggunakan teknik pengenalan pola seperti teknik statistik dan matematika[2].

Metode K-Medoids merupakan bagian dari partitioning clustering. K-medoids tidak menentukan nilai rata-rata dari objek dalam cluster sebagai titik acuan, tapi menggunakan medoids atau median, yang merupakan objek yang paling terletak dipusat sebuah cluster[3].

Melihat permasalahan diatas, maka akan diangkat judul "Penerapan Data Mining Untuk Pengelompokkan Data Kebutuhan Beras Karyawan Dengan Menggunakan Metode k-medoids Pada Kopkar Nusa Tiga".

2. KAJIAN PUSTAKA

2.1 Koperasi Karyawan

Koperasi adalah badan usaha yang menggorganisir pemanfaatan dan pendayagunaan sumber daya ekonomi para anggotanya atas dasar prinsip-prinsip koperasi dan kaidah usaha ekonomi untuk meningkatkan taraf hidup anggota pada khususnya dan masyarakat daerah kerja pada umumnya.

Koperasi karywan sendiri adalah Koperasi karyawan adalah sebuah koperasi yang berada di sebuah perusahaan tertentu. Anggota koperasi ini adalah para karyawan dari perusahaan tersebut. Tidak seperti koperasi sekolah, koperasi karyawan haruslah memiliki badan hukum dan terdaftar karena para anggota dan penggurusnya sudah dewasa dan paham mengenai hukum termasuk koperasi karyawan nusa tiga.

2.2 Data Mining

Data Mining merupakan proses iterative dan interaktif untuk mengetahui pola atau model baru yang sempurna, bermanfaat dan dapat dimengerti dalam suatu database yang sangat besar.

2.3 Metode K-Medoids

Algoritma K-Medoids K-Medoids atau Partitioning Around Medoids (PAM) adalah algoritma clustering yang mirip dengan K-Means. Perbedaan dari kedua algoritma ini yaitu algoritma K-Medoids atau PAM menggunakan objek sebagai perwakilan (medoid) sebagai pusat cluster untuk setiap cluster, sedangkan K-Means menggunakan nilai rata-rata (mean) sebagai pusat cluster.

Langkah – langkah dalam algoritma K-Medoids, antara lain sebagai berikut:

- 2 Inisialisasi pusat cluster sebanyak k (jumlah cluster)
- 3 Alokasikan setiap data (objek) ke cluster terdekat menggunakan persamaan ukuran jarak Euclidian Distance dengan persamaan:

$$d(x, y) = ||x - y||$$

= $\sqrt{\sum_{i} (xi - yi) 2 n i} = 1 : 1, 2, 3, ... n$

- 4 Pilih secara acak obiek pada masing-masing cluster sebagai kandidat medoid baru.
- 5 Hitung jarak setiap objek yang berada pada masing-masing cluster dengan kandidat medoid baru.
- 6 Hitung total simpangan (S) dengan menghitung nilai total distance baru total distance lama. Jika S < 0, maka tukar objek dengan data cluster untuk membentuk sekumpulan k objek baru sebagai medoid.
- 7 Ulangi langkah 3 sampai 5 hingga tidak terjadi perubahan medoid, sehingga didapatkan cluster beserta anggota cluster masing-masing.

8 METODOLOGI PENELITIAN

3.1 Teknik Pengumpulan Data (Data Collecting)

Beberapa teknik yang dilakukan dalam penelitian ini adalah sebagai berikut:

1. Observasi

Dalam observasi peneliti melakukan pra-riset terlebih dahulu untuk mencari masalah yang terjadi dalam pengelompokkan data kebutuhan beras karyawan. Data yang digunakan dalam penelitian ini adalah data primer.

2. Wawancara

Yang menjadi narasumber dalam proses wawancara ini adalah pihak koperasi karyawan nusa tiga. Berdasarkan hasil wawancara yang dilakukan berikut ini adalah data awal yang menjadi tolak ukur dalam pengelompokkan data kebutuhan beras karyawan Pada kopkar nusa tigayaitu sebagai berikut:

1. Data Kebutuhan Beras Karyawan

Tabel 3.1 Daftar Kebutuhan Beras Karyawan Koperasi Karyawan Nusa Tiga

No	N IZ	NDZ	Kebutuhan Beras (kg)				
NO	Nama Karyawan	NRK	Pekerja	Istri	Anak		
1	Agus setiadi	00.22.25843	15	9	15		
2	Ardihon saragi	98.24.24762	15	9	0		
3	Awaludin	99.25.25802	15	9	22,5		
4	Dachiman	93.25.25545	15	9	22,5		
5	Dani putra manurung	12.24.09041	15	9	15		
6	Dedi gunawan sinaga	13.24.10864	15	0	0		
7	Hari wahyudi	13.24.10833	15	9	7,5		
8	Heri hartanto	13.24.10823	15	9	15		
9	Irawan	96.25.25656	15	9	7,5		
10	Jaka saputra	13.24.10814	15	9	7,5		
11	Joel tampubolon	04.25.02458	15	9	22,5		
12	Juherdi panggabean	13.24.10809	15	9	0		
13	Khairudin lase	95.24.24601	15	9	22,5		
14	Lamiran	95.24.24579	15	9	22,5		
15	Mahrub	99.25.25796	15	9	22,5		
16	Mariman	00.25.25937	15	9	7,5		
17	Miswar deddy manik	13.24.10838	15	9	15		
18	M.arifin	01.25.25969	15	9	22,5		
19	Muktar siregar	98.25.25717	15	0	15		
20	Musirin	01.25.26007	15	9	15		
21	Muslihin	13.24.10843	15	9	7,5		
22	Rivo Novendra	12.24.09038	15	9	0		
	Ruhut pangondian						
23	sihombing	12.24.09033	15	9	0		
24	Samikun	97.24.24497	15	0	22,5		
25	Sumantri	00.25.25871	15	9	15		
26	Suroto - II	98.25.25699	15	9	15		
27	Suwarno	95.25.25521	15	9	15		
28	Suyatno	97.25.25684	15	9	15		
29	Teguh susanto	13.24.10813	15	9	7,5		
30	Tukino	02.25.26017	15	9	15		

2. Algoritma

 $\label{langkah} Langkah- langkah \ dalam \ metode \ \emph{K-medoids} \ pada \ pengelompokkan \ data \ beras \ karyawan \ yaitu \ sebagai \ berikut:$

1. Inisialisasi pusat cluster sebanyak k (jumlah cluster).

Dalam penelitian ini menggunakan 2 cluster yaitu C1 dan C2. Untuk pemilihan setiap medoid dipilih secara acak (random) di data no 2 dan 4 sebagai medoid awal serta dapat dilihat dari tabel dibawah ini :

Tabel 3.2 Cluster atau Medoids Awal

No	Nama	NRK	Kebuti	ihan Beras	Cluster	
	Karyawan	NKK	Pekerja	Istri	Anak	Cluster
2	Ardihon saragi	98.24.24762	15	9	0	C1
4	Dachiman	93.25.25545	15	9	22,5	C2

2. Alokasikan setiap data (objek) ke cluster terdekat menggunakan persamaan ukuran jarak Euclidian Distance dengan persamaan:

$$d(x,y) = \sqrt{(x_i - y_i)^2}$$

Untuk jarak euclidian cluster pertama atau C1 antara lain sebagai berikut :

$$d1C1 = \sqrt{(15-15)^2 + (9-9)^2 + (15-0)^2} = 15$$

$$d2C1 = \sqrt{(15-15)^2 + (9-9)^2 + (15-0)^2} = 0$$

$$d3C1 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-0)^2} = 22,5$$

$$d4C1 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-0)^2} = 22,5$$

$$d5C1 = \sqrt{(15-15)^2 + (9-9)^2 + (15-0)^2} = 15$$

$$d6C1 = \sqrt{(15-15)^2 + (0-9)^2 + (0-0)^2} = 9$$

$$d7C1 = \sqrt{(15-15)^2 + (9-9)^2 + (7,5-0)^2} = 7,5$$

Untuk jarak euclidian cluster kedua atau C2 antara lain sebagai berikut :

$$d1C2 = \sqrt{(15-15)^2 + (9-9)^2 + (15-22,5)^2} = 7,5$$

$$d2C2 = \sqrt{(15-15)^2 + (9-9)^2 + (15-22,5)^2} = 22,5$$

$$d3C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d4C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d5C2 = \sqrt{(15-15)^2 + (9-9)^2 + (15-22,5)^2} = 7,5$$

$$d6C2 = \sqrt{(15-15)^2 + (9-9)^2 + (15-22,5)^2} = 7,5$$

$$d6C2 = \sqrt{(15-15)^2 + (9-9)^2 + (7,5-22,5)^2} = 15$$

$$d8C2 = \sqrt{(15-15)^2 + (9-9)^2 + (7,5-22,5)^2} = 7,5$$

$$d9C2 = \sqrt{(15-15)^2 + (9-9)^2 + (7,5-22,5)^2} = 7,5$$

$$d9C2 = \sqrt{(15-15)^2 + (9-9)^2 + (7,5-22,5)^2} = 15$$

$$d10C2 = \sqrt{(15-15)^2 + (9-9)^2 + (7,5-22,5)^2} = 15$$

$$d11C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d12C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d14C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d14C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d16C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d16C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 0$$

$$d16C2 = \sqrt{(15-15)^2 + (9-9)^2 + (22,5-22,5)^2} = 15$$

$$d17C2 = \sqrt{(15-15)^2 + (9-9)^2 + (25,5-22,5)^2} = 7,5$$

$$d18C2 = \sqrt{(15-15)^2 + (9-9)^2 + (25,5-22,5)^2} = 7,5$$

$$d18C2 = \sqrt{(15-15)^2 + (9-9)^2 + (25,5-22,5)^2} = 7,5$$

 $d19C2 = \sqrt{(15-15)^2 + (0-9)^2 + (15-22,5)^2} = 11,71537$

Mencari nilai jarak terdekat antara cluster perama (C1) dengan cluster kedua (C2) dapat dilihat dari tabel 3.3 dibawah ini :

Tabel 3.3 Jarak terdekat antara cluster C1 dan C2

			Clust	Jarak	
No	Nama Karyawan	NRK	C1	C2	Terdekat
1	Agus setiadi	00.22.25843	15	7,5	7,5
2	Ardihon saragi	98.24.24762	0	22,5	0
3	Awaludin	99.25.25802	22,5	0	0
4	Dachiman	93.25.25545	22,5	0	0
5	Dani putra manurung	12.24.09041	15	7,5	7,5
6	Dedi gunawan sinaga	13.24.10864	9	24,23324	9
7	Hari wahyudi	13.24.10833	7,5	15	7,5
8	Heri hartanto	13.24.10823	15	7,5	7,5
9	Irawan	96.25.25656	7,5	15	7,5
10	Jaka saputra	13.24.10814	7,5	15	7,5
11	Joel tampubolon	04.25.02458	22,5	0	0
12	Juherdi panggabean	13.24.10809	0	22,5	0
13	Khairudin lase	95.24.24601	22,5	0	0
14	Lamiran	95.24.24579	22,5	0	0
15	Mahrub	99.25.25796	22,5	0	0
16	Mariman	00.25.25937	7,5	15	7,5
17	Miswar deddy manik	13.24.10838	15	7,5	7,5
18	M.arifin	01.25.25969	22,5	0	0
19	Muktar siregar	98.25.25717	17,49286	11,71537	11,71537
20	Musirin	01.25.26007	15	7,5	7,5
21	Muslihin	13.24.10843	7,5	15	7,5
22	Rivo Novendra	12.24.09038	0	22,5	0
23	Ruhut pangondian sihombing	12.24.09033	0	22,5	0
24	Samikun	97.24.24497	24,23324	9	9
25	Sumantri	00.25.25871	15	7,5	7,5
26	Suroto - II	98.25.25699	15	7,5	7,5
27	Suwarno	95.25.25521	15	7,5	7,5
28	Suyatno	97.25.25684	15	7,5	7,5
29	Teguh susanto	13.24.10813	7,5	15	7,5

30	Tukino	02.25.26017	15	7,5	7,5
31	Tukiyo	93.25.25542	15	7,5	7,5
32	Untung wahyudi	12.24.09019	15	7,5	7,5
33	Jitro panggabean	18.24.13581	9	24,23324	9
34	Surbakti arif bijaksono	18.24.13585	9	24,23324	9
35	Jeprianto	18.24.13594	9	24,23324	9
	191,7154				

Setelah di dapatkan hasil jarak dari setiap objek (cost) pada iterasi ke-1 maka lanjut ke iterasi ke-2. Kandidat medoid baru (non-medoid) pada iterasi ke-2 dapat dilihat pada tabel 3.4 berikut:

Tabel 3.3 Medoids Baru

Ī	No	Nama	NRK	Kebutı	ıhan Beras	Cluster	
NO	NO	Karyawan	NKK	Pekerja	Istri	Anak	Cluster
	11	Joel tampubolon	04.25.02458	15	9	22,5	1
	17	Miswar deddy manik	13.24.10838	15	9	15	2

Hitung kembali jarak setiap objek atau data pada iterasi ke-2 dengan menggunakan medoid baru yaitu sebagai berikut :

Untuk jarak euclidian cluster pertama atau C1 pada iterasi ke 2 antara lain sebagai berikut :

$$d1C1 = \sqrt{(15-15)^2 + (9-9)^2 + (15-22,5)^2} = 7,5$$

Sedangkan untuk jarak euclidian cluster kedua atau C2 pada iterasi ke 2 antara lain sebagai berikut :

$$d1C2 = \sqrt{(15-15)^2 + (9-9)^2 + (15-15)^2} = 15$$

Maka didapatkan hasil keseluruhannya dari iterasi ke-2 sekaligus jarak terdekatnya dan total *costnya* dapat dilihat dari tabel 3.4 sebagai berikut:

Tabel 3.4 Jarak terdekat antara cluster C1 dan C2 pada iterasi ke 2

Ma	Nama Vamona	NDV	Clust	Jarak	
No	Nama Karyawan	NRK	C1	C2	Terdekat
1	Agus setiadi	00.22.25843	7,5	0	0
2	Ardihon saragi	98.24.24762	22,5	15	15
3	Awaludin	99.25.25802	0	7,5	0
4	Dachiman	93.25.25545	0	7,5	0
5	Dani putra manurung	12.24.09041	7,5	0	0
	Dedi gunawan				
6	sinaga	13.24.10864	24,23324	17,49286	17,49286
7	Hari wahyudi	13.24.10833	15	7,5	7,5
8	Heri hartanto	13.24.10823	7,5	0	0
9	Irawan	96.25.25656	15	7,5	7,5
10	Jaka saputra	13.24.10814	15	7,5	7,5
11	Joel tampubolon	04.25.02458	0	7,5 15	0
12	Juherdi panggabean	13.24.10809	22,5	15	15
13	Khairudin lase	95.24.24601	0	7,5	0
14	Lamiran	95.24.24579	0	7,5	0
15	Mahrub	99.25.25796	0	7,5	0
16	Mariman	00.25.25937	15	7,5	7,5
17	Miswar deddy manik	13.24.10838	7,5	0	0
18	M.arifin	01.25.25969	0	7,5	0
19	Muktar siregar	98.25.25717	11,71537	9	9
20	Musirin	01.25.26007	7,5	0	0
21	Muslihin	13.24.10843	15	7,5	7,5
22	Rivo Novendra	12.24.09038	22,5	15	15

E-ISSN: 2675-9802

3. Hitung total Simpangan

Setelah di dapatkan hasil nilai jarak iterasi ke-1 dan iterasi ke-2, hitung total simpangan (S) dengan mencari selisih dari total cost baru nilai total cost lama. Dengan ketentuan jika S<0, maka tukar nilai objek dengan menentukan medoid baru dan lanjutkan iterasi. Jika jika S<0, maka hentikan iterasi dan didapat hasil clusteringnya. Hitungan total simpanagnnya yaitu :

- S = Total Cost Baru Total Cost Lama
 - = 192,9714 191,7154
 - = 1,256048

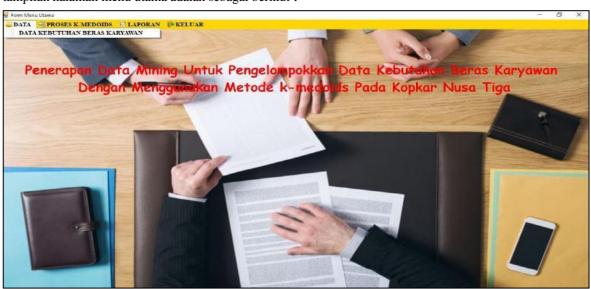
Dikarenakan nilai S>0 maka proses cluster di hentikan.

4. Pembentukan anggota setiap cluster

Nilai total simpangan atau (S) > 0 maka porses cluster di hentikan, dan langkah akhir dilakukan pembentukan anggota setiap cluster dari iterasi kedua sebagai hasil dari algoritama k-medoids untuk pengelompokkan data kebutuhan beras karyawan pada kopkar nusa tiga, dan dapat dilihat dari tabel 3.5 dibawah ini :

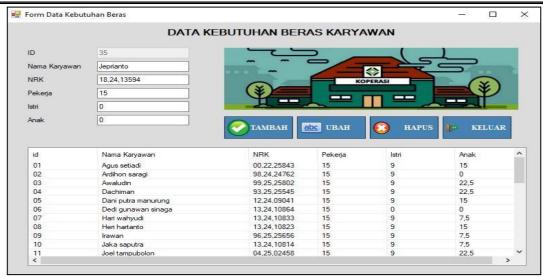
Tabel 3.5 Hasil Pengelompokkan Data Kebutuhan Beras Karyawan Tabel 3.5 Hasil Pengelompokkan Data Kebutuhan Beras Karyawan(Lanjutan)

No	Nama	NDV		han Bera		C2	
NO	Karyawan	NRK	Pekerja	Istri	Anak	C1	C2
1	Agus setiadi	00.22.25843	15	9	15		2
2	Ardihon saragi	98.24.24762	15	9	0		2
3	Awaludin	99.25.25802	15	9	22,5	1	
4	Dachiman	93.25.25545	15	9	22,5	1	
5	Dani putra manurung	12.24.09041	15	9	15		2
6	Dedi gunawan sinaga	13.24.10864	15	0	0		2
7	Hari wahyudi	13.24.10833	15	9	7,5		2
8	Heri hartanto	13.24.10823	15	9	15		2
9	Irawan	96.25.25656	15	9	7,5		2
10	Jaka saputra	13.24.10814	15	9	7,5		2
11	Joel tampubolon	04.25.02458	15	9	22,5	1	
12	Juherdi panggabean	13.24.10809	15	9	0		2
13	Khairudin lase	95.24.24601	15	9	22,5	1	
14	Lamiran	95.24.24579	15	9	22,5	1	
15	Mahrub	99.25.25796	15	9	22,5	1	
16	Mariman	00.25.25937	15	9	7,5		2


Title of manuscript is short and clear, implies research results (First Author)

	Miswar deddy						
17	manik	13.24.10838	15	9	15		2
18	M.arifin	01.25.25969	15	9	22,5	1	
19	Muktar siregar	98.25.25717	15	0	15		2
20	Musirin	01.25.26007	15	9	15		2
21	Muslihin	13.24.10843	15	9	7,5		2
22	Rivo Novendra	12.24.09038	15	9	0		2
23	Ruhut pangondian sihombing	12.24.09033	15	9	0		2
24	Samikun	97.24.24497	15	0	22,5	1	-
25	Sumantri	00.25.25871	15	9	15	1	2
26	Suroto - II	98.25.25699	15	9	15		2
27	Suwarno	95.25.25521	15	9	15		2
28	Suyatno	97.25.25684	15	9	15		2
29	Teguh susanto	13.24.10813	15	9	7,5		2
30	Tukino	02.25.26017	15	9	15		2
31	Tukiyo	93.25.25542	15	9	15		2
31	Untung	73.23.23342	13	,	13		2
32	wahyudi	12.24.09019	15	9	15		2
	Jitro						
33	panggabean	18.24.13581	15	0	0		2
2.4	Surbakti arif	10 24 12505	15	0	0		2
34	bijaksono	18.24.13585	15		0		2
35	Jeprianto	18.24.13594	15	0	0		2

3. Hasil


1. Tampilan Halaman Menu Utama

Halaman menu utama merupakan tampilan halaman awal sistem untuk melakukan pengolahan data di dalam data mining dalam pengelompokkan data kebutuhan beras karyawan. Di bawah ini merupakan tampilan halaman menu utama adalah sebagai berikut:

Gambar 1 Tampilan Halaman Menu Utama

2. Tampilan *Form* Input Data Berikut ini adalah *Form* Input Data:

Gambar 2 Tampilan Form Input Data

3. Tampilan Form Proses K-Medoids

Berikut ini adalah tampilan proses *k-medoids* adalah sebagai berikut:

Gambar 3 Tampilan Halaman Form preprocessing

4. Tampilan Halaman *Form* Pengelompokkan Berikut ini adalah tampilan *Form* Proses pengelompokkan :

Gambar 4 Tampilan Form Proses Euclidean

5. Tampilan *form* Laporan Hasil Perhitungan

Berikut ini adalah tampilan form Laporan Hasil Perhitungan:

<u> </u>	Serikut ini adalah taniphan <i>jorm</i> Laporah Hash Fernitungan.									
	KOPERASI KARYAWAN NUSA TIGA Ji. Sei Batang Hari No. 2, Babbura Sunggal, Keo. Medan Sunggal, Kota Medan, Sumatera Utara 20119, Indonesia									
	Laporan Hasil Pengelompokkan Data Kebutuhan Beras Karyawan 05/08/202									
l	id	karyawan	NRK	pekerja	istri	anak	C1	C2		
	01	Agus setiadi	00,22,25843	15.00	9.00	15.00		2		
	02	Ardihon saragi	98,24,24762	15,00	9.00	0.00		2		
	03	Awaludin	99,25,25802	15,00	9.00	22.50	1			
	04	Dachiman	93,25,25545	15.00	9.00	22.50	1			
	05	Dani putra manurung	12,24,09041	15.00	9.00	15.00		2		
	06	Dedi gunawan sinaga	13,24,10864	15.00	0.00	0.00		2		
	07	Hariwahyudi	13,24,10833	15.00	9.00	7.50		2		
	os	Heri hartanto	13.24.10823	15.00	9.00	15.00		2		
	09	Irawan	96,25,25656	15.00	9.00	7.50		2		
	10	Jaka saputra	13,24,10814	15.00	9.00	7.50		2		

Gambar 5 Tampilan form Hasil Perhitungan

4. KESIMPULAN

Jadi kesimpulan yang dapat disimpulkan dari hasil pengelompokkan data kebutuhan beras karyawan adalah sebagai berikut:

- 1. Analisis permasalahan dalam pegelompokkan data kebutuhan beras karyawan menggunakan sebuah sistem kecerdasan buatan yaitu data mining yang mengadopsi metode *k-medoids* yang mampu mengelompokkan data kebutuhaan beras setiap karyawan.
- 2. Proses pengelompokkan data kebutuhan beras karyawan menggunakan metode *k-medoids* diawali dengan proses pemilihan cluster atau medoids awal dan baru selanjutnya dilakukan proses perhitungan iterasi sehingga didapatkan nilai simpangannya. Pengelompokkan dari setiap kebutuhan beras karyawan berdasakan dua cluster.
- 3. Proses perancangan sistem diawali dengan penggambaran model menggunakan UML mulai skenario dari login, menu utama, data kebutuhan beras karyawan, proses k-medoidshasil pengelompokkan dan laporan, kemudian membuat databasenya, selanjutnya dirancang interface sistem yang kemudian dimasukkan kode program sesuai dengan metode k-medoids yang digunakan.
- 4. Sistem dapat diimplementasikan pada aplikasi berbasis *Dekstop Programming* dengan menggunakan13 *Microsoft visual basic 2010* yang mampu melakukan proses perhitungan dari pengelompokkan kebutuhan beras karyawan dengan menggunakan metode *k medoids*.

UCAPAN TERIMA KASIH

Saya ucapkan terima kasih kepada ketua yayasan STMIK Triguna Dharma, kepada Bapak Ahmad Fitri Boy, S.Kom., M.Kom selaku dosen pembimbing 1, kepada Bapak Suardi Yakub, S,E., S.Kom., M. selaku dosen pembimbing 2, kepada kedua orang tua saya yang selalu memberikan dukungan dan doa kepada saya dan tidak lupa kepada teman-teman saya seperjuangan.

REFERENSI

- [1] S. S. Wicida, "Sistem informasi koperasi karyawan pada pt. anugerah pharmindo lestari berbasis jaringan," pp. 15–21, 2008.
- [2] Y. Mardi, "Data Mining: Klasifikasi Menggunakan Algoritma C4.5," *J. Edik Inform.*, vol. 2, no. 2, pp. 213–219, 2017.
- [3] D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, "Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.

BIOGRAFI PENULIS

Agri Sastika, perempuan kelahiran D. Maliho, 25 April 1996, anak pertama dari dua bersaudara ini merupakan seorang mahasiswa STMIK Triguna Dharma yang sedang dalam proses menyelesaikan skripsi.

Yohanni Syahra, S.Si., M.Kom, Beliau Merupakan dosen tetap STMIK Ttiguna Dharma Medan dan Aktif Sebagai Pengajar pada bidang ilmu Sistem Informasi

Azanuddin, S,Kom., M.Kom, Beliau Merupakan dosen tetap STMIK Ttiguna Dharma Medan dan Aktif Sebagai Pengajar pada bidang ilmu Sistem Informasi